Lorentz and Semi-riemannian Spaces with Alexandrov Curvature Bounds

نویسندگان

  • STEPHANIE B. ALEXANDER
  • Richard L. Bishop
چکیده

A semi-Riemannian manifold is said to satisfy R ≥ K (or R ≤ K) if spacelike sectional curvatures are ≥ K and timelike ones are ≤ K (or the reverse). Such spaces are abundant, as warped product constructions show; they include, in particular, big bang Robertson-Walker spaces. By stability, there are many non-warped product examples. We prove the equivalence of this type of curvature bound with local triangle comparisons on the signed lengths of geodesics. Specifically, R ≥ K if and only if locally the signed length of the geodesic between two points on any geodesic triangle is at least that for the corresponding points of its model triangle in the Riemannian, Lorentz or anti-Riemannian plane of curvature K (and the reverse for R ≤ K). The proof is by comparison of solutions of matrix Riccati equations for a modified shape operator that is smoothly defined along reparametrized geodesics (including null geodesics) radiating from a point. Also proved are semi-Riemannian analogues to the three basic Alexandrov triangle lemmas, namely, the realizability, hinge and straightening lemmas. These analogues are intuitively surprising, both in one of the quantities considered, and also in the fact that monotonicity statements persist even though the model space may change. Finally, the algebraic meaning of these curvature bounds is elucidated, for example by relating them to a curvature function on

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Radius Sphere Theorem

The purpose of this paper is to present an optimal sphere theorem for metric spaces analogous to the celebrated Rauch-Berger-Klingenberg Sphere Theorem and the Diameter Sphere Theorem in riemannian geometry. There has lately been considerable interest in studying spaces which are more singular than riemannian manifolds. A natural reason for doing this is because Gromov-Hausdorff limits of riema...

متن کامل

Compact Space-like Hypersurfaces with Constant Scalar Curvature in Locally Symmetric Lorentz Spaces

Let Nn+p p be an (n + p)-dimensional connected semi-Riemannian manifold of index p. It is called a semi-definite space of index p. When we refer to index p, we mean that there are only p negative eigenvalues of semi-Riemannian metric of Nn+p p and the other eigenvalues are positive. In particular, Nn+1 1 is called a Lorentz space when p = 1. When the Lorentz space Nn+1 1 is of constant curvatur...

متن کامل

Gauss Equation and Injectivity Radii for Subspaces in Spaces of Curvature Bounded Above

A Gauss Equation is proved for subspaces of Alexandrov spaces of curvature bounded above by K. That is, a subspace of extrinsic curvature ≤ A, defined by a cubic inequality on the difference of arc and chord, has intrinsic curvature ≤ K +A. Sharp bounds on injectivity radii of subspaces, new even in the Riemannian case, are derived.

متن کامل

Topological regularity theorems for Alexandrov spaces

Since Gromov gave in [G1], [G2] an abstract definition of Hausdorff distance between two compact metric spaces, the Gromov-Hausdorff convergence theory has played an important role in Riemannian geometry. Usually, Gromov-Hausdorff limits of Riemannian manifolds are almost never Riemannian manifolds. This motivates the study of Alexandrov spaces which are more singular than Riemannian manifolds ...

متن کامل

Sharp Geometric and Functional Inequalities in Metric Measure Spaces with Lower Ricci Curvature Bounds

Abstract. For metric measure spaces verifying the reduced curvature-dimension condition CD∗(K,N) we prove a series of sharp functional inequalities under the additional assumption of essentially nonbranching. Examples of spaces entering this framework are (weighted) Riemannian manifolds satisfying lower Ricci curvature bounds and their measured Gromov Hausdorff limits, Alexandrov spaces satisfy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008